Received: June 15, 1988; accepted: July 13, 1988

EIN NEUES BARIUM-TANTAL-OXID-FLUORID: BasF[TaF8][TaF6O]2 [1]

F. AVERDUNK und R. HOPPE

Justus-Liebig-Universität zu Gießen, Institut für Anorganische und Analytische Chemie I, Heinrich-Buff-Ring 58, 6300 Gießen (B.R.D.)

ZUSAMMENFASSUNG

Erstmals wurden farblose, orthorhombische Einkristalle von BasF[TaFs][TaFs0]2 erhalten: a=808.5, b=1964.0 und c=1220.2 pm, Raumgruppe Cmcm (Vierkreisdiffraktometer AED 2, Fa. Siemens, R=5.2%, $R_w=5.0\%$ mit 1403 von 1570 symmetrieunabhängigen Reflexen).

Die Struktur wird durch drei auffällige Merkmale geprägt: 1.) Tantal liegt sowohl mit der Koordinationszahl acht (C.N.=8) ($[TaF_{0}]^{3-}$) als auch mit C.N.=7 ($[TaF_{6}O]^{3-}$) vor; 2.) die Koordinationspolyeder (C.P.) des Tantals sind "isoliert", und 3.) F(3) ist im Gegensatz zu allen anderen F⁻ bzw. O²⁻ nicht dem Tantal koordiniert, sondern verzerrt-tetraedrisch nur von Ba²⁺ umgeben.

Eine mögliche Ordnung von F- und O²⁻ wird (u.a. mit Hilfe des MAPLE-Konzeptes) diskutiert.

SUMMARY

Colourless single crystals of the hitherto unknown $Ba_5F[TaF_8][TaF_6O]_2$ have been obtained. The new compound crystallizes in the orthorhombic space group Cmcm with a=808.5, b=1964.0 and c=1220.2 pm (fourcircle diffractometer AED 2, Fa. Siemens, MoK₀, 1403 of 1570 I₀(hkl), R=5.2%, Rw=5.0%).

The structure shows three remarkable features: 1.) In this structure Ta has both coordination number eight (C.N.=8) in $[TaF_{\theta}]^{3-}$ and C.N.=7 in $[TaF_{6}O]^{3-}$; 2.) the coordination polyhedra of both Ta are isolated and 3.) in

contrast to all other anion positions, F(3) is not surrounded by Ta^{5+} but only by four Ba^{2+} in a distorted tetrahedron.

A possible ordered distribution of F^- and O^{2-} on the anion positions is discussed using among concepts the MAPLE concept.

EINLEITUNG

Im System $M^{2+}Ta_xF_yO_z$ sind bis heute nur wenige Verbindungen bekannt. Hervorzuheben sind hier Arbeiten von Sävborg und Lundberg, die durch Reaktion von Ta₂O₅ bzw. TaO₂F mit PbF₂ Pb₃Ta₄O₁₂F₂ [2], Pb₃Ta₅O₉F₁₃ [3], Pb₁₂Ta₉O₂₀F₂₉ [4] und Pb_xTa(O,F)_{3+x/2} (x=0.24) [5] erhielten. Über BaTa₂O₃F₅ berichtet [6].

Diese unzureichende Kenntnis des Systems ist vermutlich durch die bei der Synthese auftretenden Schwierigkeiten zu erklären: BaF2 und Ta2O5 sind hochschmelzende Verbindungen. TaO2F ist unter "Transportbedingungen" recht leicht "flüchtig". TaF5 wird wegen der schwierigen Handhabung (Darstellung, Flüchtigkeit, extreme Hydrolyseempfindlichkeit) als binäre Komponente allgemein gemieden. Ebenfalls ein Problem ist die Wahl des geeigneten Reaktionsgefäßes.

Bei den genannten Verbindungen ist das Verhältnis $F^{-}/O^{2-}\leq 2$, meist ≤ 1 . Hier ist die oktaederische Umgebung für Ta⁵⁺ charakteristisch. Interessant erscheint uns die Frage: Ändert sich die Koordinationszahl von Tantal, wenn das Verhältnis $F^{-}/O^{2-}\leq 2$ wird? Tantal kann ja gegenüber F^{-} in Fluoriden C.N.=7 (K₂[TaF₇]) [7] bzw. C.N.=8 (Na₂[TaF₈]) [8] erreichen.

ERGEBNISSE UND DISKUSSION

Darstellung

Wir untersuchen z.Zt. das Systems BaF_2-TaF_5 , von dessen Phasen (z.B. $Ba[TaF_6]_2$) es noch keine zuverlässig belegten Einkristall-Daten gibt, die <u>nicht</u> aus wässriger HF gezogen worden sind. Solche können, wie das Beispiel von K₂[TaF₇] [7] zeigt, neben F⁻ auch merkliche Mengen von OH⁻ als Ligand enthalten. Es gibt prinzipieli mehrere Möglichkeiten, auf "trockenem" Wege Einkristalle darzustellen, z.B. die "Fluorierung der Wand" (verschlossenes Tantalrohr, CuF₂ in Gegenwart von BaF₂).

Wir wählten hier einen anderen Weg: Im ersten Schritt wurde Ta-Pulver (Merck) und BaF₂ (p.a. Merck) im Verhältnis Ta:BaF₂=1:1 fluoriert (Autoklav / $p_{Fluor=200}$ atm / 300 C[•] / 2d). Das so erhaltene farblose Pulver, das nach der Auswertung der Guinier-de Wolff-Aufnahme keiner bekannten Verbindung entspricht, wurde (Umfüllapparatur unter Argon) in ein einseitig zugeschweißtes Ta-Rohr überführt. Dieses wurde zugeschweißt (Lichtbogen-Schweißgerät / unter vermindertem Druck in He-Atmosphäre) und in einer Quarzglasampulle (binnen 2 d auf ca. 900°C) aufgeheizt. Bei dieser Temperatur wurde 14 d getempert, anschließend in Intervallen von 40°C binnen 15 d auf 300°C abgekühlt. Dann wurde die Heizung abgeschaltet.

Eigenschaften

So erstmals dargestellte Einkristalle von $Ba_5F[TaF_6][TaF_6O]_2$ sind farblos, sie erscheinen leicht getrübt. Ihr Habitus ist unregelmäßig, ø max. 0.2 mm. An feuchter Luft zeigen sie keine merkliche Reaktion.

Die erhaltenen farblosen Pulverpräparate sind inhomogen. Von 122 Reflexen der Guinier-de Wolff-Aufnahme (ausgewertet bis 4 Θ = 125°) wurden nur 103 Reflexe orthorhombisch indiziert, vgl. Tab. 1. Die nicht indizierten Reflexe konnten keiner bekannten Substanz zugeordnet werden, vgl. [1].

Röntgenographische Untersuchungen

Mehrere Einkristalle wurden unter dem Mikroskop unter polarisiertem Licht ausgesucht und mit photographischen Methoden voruntersucht. Der geeignetste wurde für die Sammlung der Vierkreisdiffraktometerdaten eingesetzt. Ebenso wurden von diesem Kristall Präzessionsaufnahmen (hk0, hk1, h0l, h1l, 0kl, 1kl) angefertigt. Die gefundenen Auslöschungsbedingungen entsprachen der Raumgruppe Cmcm bzw. deren azentrischen Untergruppen.

Zur Strukturaufklärung wurden die Rechenprogramme SHEL-X 76 [9] und MULTAN 78 [10] benutzt. Die durch MULTAN 78 ermittelten Positionen der Schweratome wurden durch die dreidimensionale Pattersonsynthese [11] sowie durch den Vorschlag aus den Direkten Methoden [12] bestätigt. Durch die Differenzfourier-Synthese konnten die Positionen der Anionen bestimmt werden.

TABELLE 1	
-----------	--

h	k	1	$\sin^2\Theta_{\rm C}\cdot 10^3$	$\sin^2\Theta_0 \cdot 10^3$	Ic	Io
0	2	0	6.15	6.09	0.40	1.0
0	2	1	10.14	10.05	0.29	1.0
1	1	0	10.61	10.51	0.24	0.5
0	2	2	22.09	22.12	1.50	5.0
1	3	0	22.92	22.88	1.36	3.0
0	4	0	24.61	24.62	0.43	1.0
1	1	2	26.55	26.53	1.14	2.0
1	з	1	26.91	26.82	0.50	1.0
0	4	1	28.60	28.61	0.04	0.5
2	0	0	36.30	36.24	4.64	5.0
1	3	2	38.86	38.82	2.88	5.0
0	4	2	40.55	40.51	10.00	10.0
Ö	2	3	42.02	42.00	4.17	8.0
2	2	0	42.45	42.47	2.26	5.0
2	2	1	46.44	46.47	0.61	1.0
1	1	3	46.48		0.34	
1	5	0	47.54	47.63	1.55	3.0
1	5	1	51.52	51.62	0.78	2.0
2	0	2	52.24	52.56	2.35	6.0
0	6	0	55.38	55.45	0.01	0.5
2	2	2	58.39	58.35	5.65	9.0

Auswertung der Guinier-de Wolff-Aufnahme von BasF[TaF6][TaF60]2 (CuKa1-Strahlung; =1.54051A); Vergleichssubstanz T-Quarz a=4.913A, c=5.405A

In der Tabelle sind nur die beobachteten Reflexe von Ba₅F[TaF₈]{TaF₅O]₂ aufgeführt. Bzgl. weiterer Werte vgl. [1].

Die Verfeinerung aller Lageparameter und der "anisotropen Temperaturfaktoren" erfolgte mittels der Methode "full matrix" least squares, sie endete mit R=5.2% bzw. R_w=5.0%. Das Maximum der Restelektronendichte in der Differenzfourier-Synthese betrug $0.8 \cdot 10^{-6}$ e/pm³, wobei es sich um einen "Seitenpeak" der Lage von Ta(1) handelte. Bzgl. der Einzelheiten vgl. Tab. 3. Die Endwerte der Lageparameter gibt Tab. 2.

Uberraschend zeigte sich so, daß die Zahl der "röntgenographisch gefundenen" Teilchen nicht der durch die Farbigkeit der Probe gesicherten Oxydationsstufe +5 für Tantal entspricht. Da die Restelektronendichte der Differenzfourier-Synthese überall nur Werte $\leq 10^{-5}$ Elektronen/pm³ erreicht, muß eines der Teilchen (bei geordneter Verteilung) auf 8-zähliger Lage O²⁻ sein.

TABELLE 2

Lageparameter und "anisotrope Temperaturfaktoren" von $Ba_5F[TaF_6][TaF_6O]_2$ (in Klammern: Standardabweichungen in Einheiten der letzten Stelle)

	Lage	x/a	у/ъ	z/c	U1 1	U2 2	U3 3	U2 3	U1 3	U _{1 2}
Tal	8f	.0000	.34440(4)	.48168(7)	100 (3)	131 (3)	233 (4)	37(3)	0	0
Ta2	4 c	.0000	.04955 (5)	.2500	111 (4)	69 (4)	93 (4)	0	0	0
Bal	8g	.25048 (14)	.28059(6)	.7500	181 (5)	271 (5)	280 (6)	0	0	-62(4)
Ba2	4 c	.0000	.50689(8)	.7500	184(7)	211 (7)	296 (8)	0	0	0
Ba3	8£	.0000	.11634(5)	.52823(8)	192(5)	162(4)	148(4)	-8(3)	0	0
F1	8f	.0000	.1348 (5)	.1546(9)	361 (56)	161 (41)	216 (48)	42 (39)	0	0
F2	8g	.2294(16)	.0786(6)	.2500	288 (58)	290 (53)	665 (75)	0	0	13 (48)
F3	4 c	.0000	.8177(8)	.2500	529 (85)	229 (64)	209 (65)	0	0	0
F4	8f	.0000	.2644 (8)	.5845(13)	350 (63)	585 (73)	553 (74)	-260 (66)	0	0
F5	16h	.7322(11)	.1722(5)	.0296 (9)	225 (40)	452 (45)	599 (55)	-138 (44)	-10(40)	-4(37)
F 6	8g	.6404 (18)	.4659(6)	.2500	365 (64)	247 (51)	992 (8 9)	0	0	121 (53)
F 7	16g*	.9675(30)	.0209(8)	.4037(13)	867 (119)	2 95 (62)	194 (58)	-1(51)	-19(74)	56 (76)
08	8f	.0000	.2760(8)	.3758(13)	721 (86)	570(75)	524 (75)	-380(64)	0	0
F 9	16g	.3523(15)	.9013(8)	.1123(11)	397 (55)	1292 (8 2)	859 (71)	-783 (65)	147 (56)	9 9 (61)
F10	16g**	.9801 (35)	.6004(25)	.1100(33)	190 (110)	5136 (116)	3536 (108)	4128 (89)	303 (95)	369 (103)

*) Die Lageparameter von F(7) wurde als Splitlage (16h) der Lage 8f verfeinert. Der freigegebene Besetzungsfaktor nahm den Wert k=0.5114 an. **) Die Lageparameter von F(10) wurde ebenfalls als Splitlage (16h) der Lage 8f verfeinert. Der freigegebene Besetzungsfaktor nahm den Wert k=0.5725 an. Die hohen B-Werte könnten durch die besondere Umgebung von F(10) (C.N.=2) erklärt werden, vgl. auch Text und Tab. 4. Im folgenden wurde für alle Rechnungen mit den Lagen F(7) und F(10) anstelle von $\pm x_x y_z$ (16h) der Wert 0, y_z (8f) angenommen.

Der "anisotrope" Temperaturfaktor hat die Form: exp $[-2n^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)];$ Koeffizienten der Temperaturfaktoren in pm².

Zur möglichen geordneten Verteilung von F- und O2- auf die Anionenlagen

Es gibt mehrere Methoden, Aussagen über eine geordnete Verteilung von O²⁻ und F- auf verschiedenen Anionenlagen (in diesem Fall zehn) zu machen: A. Strukturchemische Betrachtungen,

B. die Analyse des NMR-Spektrums von ¹⁹F.

TABELLE 3

 $Ba_5F[TaF_6][TaF_6O]_2, \quad kristallographische \ und \ röntgenanalytische \ Daten$

Kristallsystem	orthorhombisch				
Raumgruppe	Cmcm (Nr. 63)				
Gitterkonstanten in pm	1: 2:				
[1:Guinier-de Wolff-Daten	a = 808.56(10) $a = 810.04$				
2:Vierkreisdiffraktometerdaten]	b = 1963.79(20) $b = 1966.43$				
(Standardabweichung in Klammern)	c = 1220.19(13) $c = 1220.90$				
Dichte (röntgenographisch, g.cm ⁻³)	5.67				
Zahl der Formeleinheiten pro Elementarzelle	4				
Molares Volumen:					
(Summe der binäre Komponenten*, cm³)	318.6				
(röntgenographisch, cm³)	291.7				
Kristallform, -farbe	unregelmäβig, farblos, (trüb)				
F(000)	2816				
lin. Absorptionskoeffizient μ (Mo-K _a , cm ⁻¹)	256.61				
Diffraktometer	Vierkreis (Siemens AED 2)				
Strahlung, Monochromator	$Mo-K_{\alpha}$ (= 0.71069 Å), Graphit				
Korrekturen der Intensitäten	Polarisations-, Absorptions-				
	korrektur, Lorentzfaktor				
Meßbereich	$3^{\circ} \leq \Theta \leq 30^{\circ}$				
Abtastung, Abtastbreite	w-scan, 1.8° bis 2.0°				
Anzahl der symmetrieunabhängigen Reflexe	1570				
nicht berücksichtigte Reflexe	167 mit F₀ ≤ 3σ (F₀)				
Lösungsverfahren	Direkte Methoden, Multan 78,				
	Differenzfouriersynthese				
Parameterverfeinerung	"full-matrix" least squares,				
	anisotrope Temperaturfaktoren				
$\mathbf{R} = \Sigma \left[\left \mathbf{F}_{\mathbf{o}} \right - \left \mathbf{F}_{\mathbf{c}} \right \right] / \Sigma \left[\mathbf{F}_{\mathbf{o}} \right]$	5.15%				
$\mathbf{R}_{\mathbf{w}} = \Sigma \sqrt{\mathbf{w}} \left[\mathbf{F}_{\mathbf{o}} \right] - \left[\mathbf{F}_{\mathbf{c}} \right] \left[/ \Sigma \sqrt{\mathbf{w}} \right] \mathbf{F}_{\mathbf{o}} $	5.03%				
Wichtungsfaktor w	$1.9137/[\sigma^2(F_o)+0.001\cdot F_o^2]$				

*) Zur Berechnung wurden als binäre Komponenten BaF2, BaO und TaF5 verwendet.

- C. die Ramanspektroskopie,
- D. das MAPLE-Konzept und
- E. das Bond-Strength-Bond-Length-Konzept.

A. Im vorliegenden Fall ergeben sich strukturbedingt drei prinzipielle Möglichkeiten, die Sauerstofflage zuzuordnen. Diese lassen sich aus der Summenformel ableiten:

Ba₅X^a)[TaX₈^b)][TaX₇^c)]₂

<u>a)</u> Bei X^{a)}, dem Anion, das nicht Ta⁵⁺ zugeordnet ist, handelt es sich um eine vierzählige Anionenlage. Da aber acht O²⁻ pro Elementarzelle vorhanden sein müssen und bei X^{a)} die einzige vierzählige Anionenlage ist, kommt diese nicht in Betracht.

	F (1)	¥{2}	7(3)	7(4)	P(5)	P(6)	T(7)	0(8)	P (9)	F(10)	CI	EColi Lat/P	HEFIR Ext/Y
Ta(1)	-	-	-	1/1 201.0	2/1 199.3	-	••••••	1/1 186.4	2/1 199.8	1/1 190.4	7	6.8	65.2
Ta (2)	2/1 204.0	2/1 194.1	-	-	-	2/1 199.6	2/1 195.8	-	-	-	t	7.9	67.5
Ba (1)	2/2 286.1	1/1 277.0	1/2 279.8	2/2 287.8	2/1 284.8	-	•	2/2 276.8	-	[2/2] [353.3]	10+{2}	10.1	152.5
Ba (2)	-	2/1 275.8	-	-	•	2/1 295.6	-	-	4/1 273.8	2/1 271.3	10	9.7	146.3
Ba(3)	1/1 274.3	-	1/2 256.9	1/1 291.5	2/1 270.5	2/2 296.9	1/1 1/1 271.6 274.6	-	2/1 291.9	-	11	9.8	144.5
CI	4	3	4	1	3	4	3	3	3	2(+2)			
B Co N													
Lat/F	4.0	3.0	3.9	4.0	3.0	3.9	3.0	3.0	2.9	2.0			
Lat/I	8.6	7.2	5.8	7.5	6.4	6.5	7.3	7.9	5.8	7.6			
uer i r													
lat/I	132.2	128.3	125.0	134.5	130.5	137.5	129.1	126.2	132.7	126.5			
Kat∕I	124.5	124.3	126.2	125.8	124.3	121.5	124.0	130.8	125.5	130.5			

TABELLE 4Motive der gegenseitigen Zuordnung, ECoN und MEFIR (sowie Abstände in pm)

Aus den nach dem ECoN-Konzept gewichteten Abstandsmitteln folgen mit $r(F^{-})=130.3pm$ (bei einer mittleren C.N.=3.3) unter Verwendung von $r(F^{-})=128pm$ bei C.N.=2, $r(F^{-})=130pm$ bei C.N.=3 und $r(F^{-})=131pm$ bei C.N.=4 als Startwerte: r(Ta(1))=65.0pm, r(Ta(2))=67.5pm, r(Ba(1))=151.6pm, r(Ba(2))=145.9pm und r(Ba(3))=144.6pm.

b und c) Für den Fall X^{b)} und X^{c)} ergibt sich:

b) BasF[TaFsO2][TaF7]2 mit [TaFsO2]⁵⁻ und 2 x [TaF7]²⁻
c) BasF[TaFs][TaFsO]2 mit [TaFs]³⁻ und 2 x [TaFsO]³⁻
Uns erscheint die Möglichkeit c) wahrscheinlicher, da in diesem Fall beide
Polyeder die formal gleiche Ladung tragen. Des weiteren sind Strukturen mit
vergleichbaren C.P. des Niobs und Tantals wie z.B. Nas[TaFs] [8] und
Nas[NbFsO] [13] schon an Einkristallen bekannt, während kein Beispiel für
[TaFsO2]⁵⁻ gesichert ist.

Mit $[TaF_6O]^{3-}$ ergeben sich nun drei Möglichkeiten [X(4), X(8), X(10)], O²⁻ auf die Anionenlagen gemäß $[TaX(4)_{1/1}X(5)_{2/1}X(8)_{1/1}X(9)_{2/1}X(10)_{1/1}]$ zuzuordnen. B. Auf NMR-Untersuchungen mußte verzichtet werden, da die erhaltenen Proben inhomogen und die Zusammensetzung der "Verunreinigungen" noch unbekannt sind. Ebenso dürfte das zu erwartende Spektrum kompliziert sein (niedrige Symmetrie der C.P. um Tantal in Verbindung mit zwei verschiedenen C.N.).

C. Das unter B gesagte gilt mit Einschränkungen auch für die Raman-Spektroskopie.

D. Nach dem MAPLE-Konzept [14] sollte die Summe der MAPLE-Werte der binären Komponenten etwa gleich dem MAPLE-Wert der ternären oder quarternären Verbindung (Abweichungen sollten 1% nicht überschreiten) sein. Für BasF[TaFs][TaFsO]2 kann die Summe der binären Komponenten auf zwei Wegen ermittelt werden, (Angaben in kcal/Mol), vgl. auch Tab. 5:

1. $3xBaF_2$ (3x623) + 2xBaO (2x840) + 3xTaF₅ (3x3478) = 13983

2. $5xBaF_2$ (5x623) + 1xTaO₂F^{*} (4301) + 2xTaF₅ (2x3478) = 14372

[*) Dieser Wert für TaO₂F wurde (isotyp zu ReO₃) mit geordneter Verteilung von O²⁻ auf 1/2 0 0 und 0 1/2 0 sowie F⁻ auf 0 0 1/2 berechnet. Bei der Abschätzung des MAPLE-Wertes von TaO₂F aus TaF₅ und Ta₂O₅ gemäß 2Ta₂O₅ + TaF₅ = 5TaO₂F erhält man in guter Übereinstimmung 4314 kcal/Mol, wobei der MAPLE-Wert von Ta₂O₅ mit 9046 kcal/Mol angenommen wurde.}

Um eine Wertung der beiden widersprüchlichen Ergebnisse vorzunehmen, wird zum Vergleich der MAPLE-Wert von Na₃[NbF₆O] herangezogen (Angaben in kcal/Mol):

3. $1xNaF(251) + 1XNa_2O(696) + 1xNbF_5(3481) = 4428$

4. $3xNaF(3X251) + 0.5xNbO_2F^{**}(0.5x4294) + 0.5xNbF_5(0.5x3481) = 4640$

[**) Der MAPLE-Wert für NbO₂F wurde analog zu TaO₂F ermittelt. Der aus 2Nb₂O₅(HT) und NbF₅ folgende Wert für NbO₂F beträgt in guter Übereinstimmung 4290 kcal/Mol.]

Der aus der quarternären Verbindung Na₃[NbF₆O] mit geordneter Verteilung von F- und O²⁻ berechnete Wert liegt mit **4527 kcal/Mol** zwischen den Werten 3 und 4.

Nun ist die Abschätzung nach 3 sicher im Betrag zu klein, weil hier O²⁻ bei der einen Komponente nur an Na⁺ beteiligt ist. Aus gleichem Grund sollte, was auch zutrifft, die Abschätzung nach 4 einen zu großen Betrag für Na₃[NbF₆O] geben, denn hier wird unterstellt, daß O²⁻ nur an Nb⁹⁺ teilhat. Tatsächlich ist O²⁻ in Na₃[NbF₆O] sowohl an Na⁺ wie auch an Nb⁹⁺ koordiniert. Bildet man der Einfachheit halber den Mittelwert, so ist die Übereinstimmung mit 4534 kcal/Mol gut. Auf gleiche Weise ergibt sich so für Ba₅F[TaF₆][TaF₆O]₂ ein mitterer MAPLE-Wert von 14175.7 kcal/Mol. Für die möglichen Anionenlagen [X(4), X(8), X(10)] ergeben MAPLE-Rechnungen, bei denen die jeweilige Lage mit Sauerstoff besetzt wurde, folgende Werte:

X(4)=14047 kcal/Mol ; X(8)=14168 kcal/Mol ; X(10)=14102 kcal/Mol Damit scheidet die Position X(4) als mögliche Anionenlage des Sauerstoffs aus. Weitere Aussagen läßt das MAPLE-Konzept nicht zu.

Bei Na₂[NbF₆O] bildet O²⁻ Kopf bzw. Fuß der pentagonalen Bipyramide um Nb⁵⁺. Bei Ba₅F[TaF₈][TaF₆O]₂ sind die beiden für O²⁻ noch möglichen Positionen X(8) und X(10) Kopf und Fuß der pentagonalen Bipyramide um Ta(1); die bestätigt die bisherigen Überlegungen.

E. Das Bindungslänge-Bindungsstärke-Konzept [11] führt in der Regel immer zu dem gleichen Ergebnis: Bei den Liganden F- oder O²⁻ wird der Sauerstoff immer der Anionenlage mit dem kürzesten Abstand M-X zugeordnet, wie es z.B. bei Na₂[WO₂F₄], LiW₃O₉F und NaMoO₃F gezeigt und spektroskopisch bestätigt wurde [12].

In unserem Fall wäre das die Lage X(8), ein Ergebnis, welches auch im Einklang mit dem des MAPLE-Konzeptes steht.

Zusammenfassend kann gesagt werden, daß offenbar die Position X(8) mit Sauerstoff besetzt ist. Die Möglichkeit, daß der Sauerstoff statistisch auf alle (oder einige) Anionenlagen verteilt ist, kann nicht ausgeschlossen werden. Einen grundlegenden Einfluß auf den Aufbau der Struktur als ganzes hat das nicht.

Mögliche Ursachen des Einbaus von Sauerstoff

Der im Endprodukt gefundene Sauerstoff kann auf mehreren Wegen in die Probe gelangt sein:

 Beim Umfüllen der fluorierten Substanz vom Autoklaven in die mit einer Bombenfüllapparatur kombinierte Umfüllapparatur kann die Substanz kurzfristig mit Luft in Berührung gekommen sein, was eine teilweise Hydrolyse von TaFs zur Folge hätte.

2. Es könnten sich, trotz Ausheizens im Vakuum, noch Feuchtigkeitsspuren an der Glasoberfläche der Umfüll- bzw. der Bombenfüllapparatur befunden haben.

 Bas Tantal-Rohr selbst könnte mit einer Oxidschicht belegt gewesen sein. (Es wurde vor der Verwendung in einer Mischung von 1/3 konz. HNO₃, 1/3 konz. H₂SO₄ und 1/3 40%iger HF gereinigt). 4. Beim mechanischen Verschließen des Ta-Rohres sowie beim Überführen des Ta-Rohres in den Lichtbogenschweißer wäre ebenfalls ein Kontakt der Substanz mit Luft möglich gewesen.

Die Synthese von Ba₅F[TaF₉]|TaF₆O]₂ wurde unter analogen Bedingungen wiederholt und führte zu den gleichen Ergebnissen. Versuche, Ba₅F[TaF₈][TaF₆O]₂ auf anderen Wegen darzustellen, wie z.B. durch die Wandreaktion von CuF₂ und CuO (Verhältnis 10.5:1) im geschlossenen Ta-Rohr in Gegenwart von BaF₂, scheiterten bisher.

Beschreibung der Kristallstruktur

I. Primärstruktur

Das C.P. von Ta(1) entspricht einer leicht verzerrten pentagonalen Bipyramide, das C.P. von Ta(2) einem stark verzerrten archimedischen Antiprisma (vgl. Abb. 1 u. 2). Bzgl. der C.P. von Ba vgl. Abb. 3 bis 5.

Abb.1. C.P. um Ta(1)

Abb.2. C.P. um Ta(2)

Abb.3. C.P. um Ba(1)

Abb.4. C.P. um Ba(2)

Abb.5. C.P. um Ba(3)

II. Sekundärstruktur

Die C.P. von Ta(1), Ta(2) und Ba(2) sind nicht mit ihresgleichen verknüpft. Die C.P. von Ba(1) bilden lineare Ketten längs [100], vgl. Abb. 6. Die C.P. von Ba(3) verknüpfen sich längs [001] zu einer Vierer-Einfachkette Vgl. Abb. 7. Bzgl. der Verknüpfung der C.P. vergleiche auch Tab. 4.

III. Tertiärstruktur

Die Kationen für sich betrachtet, mit Ausnahme von Ba(1), bilden Schichten parallel (100), vgl. Abb. 8. Hierbei sind die Schichten in x/a=0 und x/a=1/2 in Richtung [010] um y/b=1/2 gegeneinander verschoben. Verknüpft werden diese Schichten durch C.P. um Ba(1) in x/a=1/4 und x/a=3/4. (Die schraffierten Flächen in Abb. 6 und Abb. 8 sind identisch).

Hervorzuheben ist noch die "Funktion" von F(3), welches zwei Ba(3) aus der Kationen-Schicht parallel (100) mit zwei Ba(1) aus der Kette längs [001] so verknüpft, daß dabei F(3) verzerrt tetraederisch von Ba umgeben wird, vgl. Abb. 9.

Abb.7. Verküpfung der C.P. um Ba(3) zu einer Vierfach-Einerkette längs [001]

Abb.6. Verknüpfung der C.P. um Ba(1) zur Zweier-Einfachkette in Richtung [100] F- hat in der Regel C.N.=3 bzw. C.N.=4. Die Ausnahme bildet F(10) mit C.N.=2. F(10) verknüpft dabei (neben F(9)) die C.P. von Ta(1) und Ba(2). Dabei ist der Winkel Ta(1)-F(10)-Ba(2) mit 162° nahe 180°. Dieses und die F(10) umgebenden "Hohlräume" sind vermutlich die Ursache für die hohen "anisotropen Temperaturfaktoren", die bei der Strukturverfeinerung gefunden wurden.

Der Madelunganteil der Gitterenergie, MAPLE

Tab. 5 gibt die Einzelwerte. Der Wert für Ta(2) mit 2601.5 kcal/Mol entspricht dem aus TaFs mit 2607.4 kcal/Mol. Der Beitrag des mit Sauerstoff koordinierten Ta(1) ist mit 2725.3 kcal/Mol etwas größer als erwartet (zum Vergleich: Nb in Nas[NbF60] liefert 2658.9 kcal/Mol, Nb in NbFs 2609.0 kcal/Mol).

TABELLE 5

Der Madelunganteil der Gitterenergie, MAPLE, von BasF[TaFs][TaFsO]2 (Werte in kcal/Mol)

_		_			the second se				
		n	binär ^{ı)}	binär ¹¹⁾	ternär	δ1)	δ11)	n.δ1)	n-811)
	Ta(1)	2	2607.4 ^{s)}	2607.4 ^{a)}	2725.3	+117.9	+117.9	+235.8	+235.8
	Ta(2)	1	2607.4ª)	2918.4 ^{b)}	2601.5	-5.9	-316.9	-5.9	-316.9
	Ba(1)	2	420.0 ^{c)}	404.9 ^{d)}	446.8	+26.8	+41.9	+53.6	+83.8
	Ba(2)	1	404.9 ^{d)}	404.9 ^d)	387.3	-17.6	-17.6	-17.6	-17.6
	Ba(3)	2	404.9 ^d	404.9 ^d)	425.4	+20.5	+20.5	+41.0	+41.0
	F(1)	2	174.1 ^{e)}	174.1°)	130.1	-44.0	-44.0	-88.0	-88.0
	F(2)	2	174.1°)	174.1 ^{e)}	165.9	-8.2	-8.2	-16.4	-16.4
	F(3)	1	174.1e)	199.6 ^{b)}	88.9	-85.2	-110.7	-85.2	-110.7
	F(4)	2	174.1°)	174.1°)	131.5	-42.6	-42.6	-85.2	-85.2
	F(5)	4	174.1 ^{e>}	174.1°)	136.3	-37.8	-37.8	-151.2	-151.2
	F(6)	2	174.1 ^{e)}	108.9 ^{d)}	146.7	-27.4	+37.8	-54.8	+75.6
	F(7)	2	174.1°)	108.94)	163.7	-10.4	+54.8	-20.8	+109.6
	0(8)	2	420.0 ^{c)}	591.4 ^{b)}	459.9	+39.9	-131.5	+79.8	-263.0
	F(9)	4	108.9 ^{d)}	108.9 ^{d)}	149.4	+40.5	+40.5	+161.0	+162.0
	F(10)	2	108.9 ^{d)}	108.9 ^{d)}	178.3	+69.4	+69.4	+138.8	+138.8
	Σ		13981.8	14370.1	14167.7			185.9	-202.4

^{I)} $3xBaF_2 + 2xBaO + 3xTaF_5$ ^{II)} $5xBaF_5 + TaO_2F + 2xTaF_5$

*) aus TaFs (Mittelwert aus 2599.9 und 2614.8 kcal/Mol für Ta(1) und Ta(2))

^{b)} aus TaO₂F (berechnet unter Verwendung spezieller Lagen für F⁻ und O²⁻)

c) aus BaO d) aus BaF2

e) aus TaF₅ (Mittelwert aus den Einzelbeiträgen der F-: 183.8 + 168.5 + 2x155.9 + 2x210.3 + 2x169.3 + 2x158.6 kcal/Mol)

Vergleicht man die Einzelbeiträge von Ba^{2+} [Ba(1):446.8 kcal/Mol, Ba(2):387.3 kcal/Mol, Ba(3):425.4kcal/Mol], so sind diese von der Größe wie Ba^{2+} in BaF_2 [404.9 kcal/Mol] und Ba^{2+} in BaO [420 kcal/Mol].

Der niedrige Beitrag von F(3) mit 88.9 kcal/Mol ist durch die ausschließliche Koordination an Ba²⁺ zu erklären; alle anderen F- bzw. O²⁻ sind sowohl an Ta⁵⁺ als auch an Ba²⁺ gebunden, vgl. auch Tab. 4. Die anderen Beiträge von F- schwanken in einem Bereich von 130.1 kcal/Mol [F(1)] und 178.3 kcal/Mol [F(10)], der Mittelwert beträgt 145.9 kcal/Mol. [Zum Vergleich dazu: Die Einzelbeiträge von Fin TaF₅ schwanken zwischen 155.9 u. 210.3 kcal/Mol. der Mittelwert beträgt 174.1 kcal/Mol.] Damit liegen die Einzelbeiträge der F- in der Größenordnung des zu erwartenden. Bzgl. weiterer Einzelheiten vgl. [1]. Die Übereinstimmung bleibt insgesamt mäßig.

Schlußbemerkung

Bei Ba₅F[TaF₆][TaF₆O]₂ handelt es sich um ein Oxidfluorid neuen Strukturtyps, bei dem Schichten der C.P. von Ta(1), Ta(2), Ba(2) und Ba(3) durch C.P. um Ba(1) dreidimensional verknüpft werden. Dieser Typ sollte auch bei "reinen" Fluoriden zu realisieren sein, in dem die [TaF₆O]³⁻-Baugruppe durch [M⁴⁺F₇]³⁻ ersetzt wird, wobei M⁴⁺ und Ta⁵⁺ etwa die gleichen Radien haben sollten, wie z.B. Zr, Hf, W, Tb. Mit Versuchen zur Darstellung dieser neuartigen Fluoride sind wir beschäftigt. Des weiteren sind Versuche im Gange, BasF[TaF₆][TaF₆O]₂ auf anderem Weg darzustellen.

DANKSAGUNG

Die Vermessung des Einkristalls am Vierkreisdiffaktometer erfolgte durch Dr. Mike Serafin, die Rechnungen wurden am HRZ der Universität Gießen durchgeführt.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie sowie der Kali-Chemie, Bad Wimpfen für die Unterstützung mit Geldund Sachmitteln.

LITERATUR

- 1 F. Averdunk: Teil der Dissertation, Gieβen
- 2 O. Sävborg und M. Lundberg, J. Solid State Chem., 57 (1985) 135.
- 3 Ö. Sävborg, J. Solid State Chem., 57 (1985) 148.
- 4 Ö. Sävborg, J. Solid State Chem., 57 (1985) 154.
- 5 Ö. Sävborg, J. Solid State Chem., 57 (1985) 160.
- 6 D.V. Tsikaeva, S.D. Nikitina, A.I. Agulyanskiiand und V.T. Kilinnikov, Koord. Khim., <u>12</u>(7) (1986) 929.
- 7 C.C. Torardi, L.H.Brixner und G.Blasse, J. Solid State Chem., 67 (1987) 21.
- 8 J.L. Hoard, W.J. Martin, M.E. Smith und J.F. Whitney, J. Am. Chem. Soc., <u>76</u> (1954) 3820.
- 9 G.M. Sheldrick, Shel-X-Programmsystem, Cambridge U.K. 1976.
- 10 G. Germain, P.Main und M.M. Woolfson, Acta Cryst., 27A (1971) 368.
- A.L. Patterson, Phys. Rev., <u>46</u> (1934) 372.
 A.L. Patterson, Z. Kristallogr., <u>92A</u> (1935) 517.
 D. Harker, J. Chem. Phys., <u>4</u> (1936) 381.

- 12 J. Karle und H. Hauptmann, Acta Cryst., <u>3</u> (1950) 181.
 D. Sayre, Acta Cryst., <u>5</u> (1952) 60.
- 13 R. Stromberg, Acta Chem. Scand., <u>37A</u> (1983) 453.
- 14 R. Hoppe, Angew. Chem., <u>78</u> (1966) 52.
 Angew. Chem., Int. Ed. <u>5</u> (1966) 95.
 Angew. Chem., <u>82</u> (1970) 7.
 Adv. Fluorine Chem., <u>6</u> (1970) 387.
 in: Crystal Structure and Chemical Bonding in Inorganic Chemistry, S. 127, Amsterdam 1975.
- 15 I.D. Brown und R.D. Shannon, Acta Cryst., 29A (1973) 266.
 - I.D. Brown und Kang Kun Wu, Acta Cryst., 32B (1976) 1957.
 - I.D. Brown in: Structure and Bonding in Crystalls Vol II, Chapter 14, Academic Press, New York 1981.
- 16 J.P. Chaminade, J.M. Moutou, G. Villeneuve, M. Couzi, M. Pouchard und P. Hagenmuller, J. of Solid State Chem., <u>65</u> (1986) 27.